Emne

Generativ AI (DAT560)

Dette emnet en grundig forståelse av generativ AI, med fokus på viktige konsepter, teknikker og anvendelser. Emnet dekker modellutvikling for å generere tekst, bilder og media, samt avanserte temaer som multimodal AI og etiske hensyn som rettferdighet og bias.


Dette er emnebeskrivelsen for studieåret 2025-2026

Fakta

Emnekode

DAT560

Vekting (stp)

10

Semester undervisningsstart

Vår

Undervisningsspråk

Engelsk

Antall semestre

1

Vurderingssemester

Vår

Innhold

Dette emnet gir en dyp forståelse av grunnleggende generativ kunstig intelligens (AI), som dekker grunnleggende konsepter, nøkkelteknikker og et bredt spekter av applikasjoner. Studentene vil lære om kjerneprinsippene som ligger til grunn for generativ AI, inkludert utvikling og evaluering av modeller som er i stand til å lage tekst, bilder og andre former for medier. Emnet introduserer også avanserte emner, for eksempel integrering av tekst og visuelle data, og bruken av generativ AI på tvers av forskjellige domener som medisin, juss og kreative industrier. Etiske hensyn, som rettferdighet og skjevhet, vektlegges gjennom hele emnet, og sikrer at studentene er forberedt på å bygge ansvarlige AI-systemer

Læringsutbytte

Kunnskap:

  • Forstå de grunnleggende konseptene og prinsippene for generativ AI.
  • Evne til å identifisere behovet for og bruke generativ AI i ulike domener og anvendelser.
  • Forstå de etiske utfordringene knyttet til generativ AI, inkludert spørsmål om rettferdighet og bias.

Ferdigheter:

  • Utvikle og forbedre generative AI-modeller for ulike anvendelser, med vekt på praktisk implementering.
  • Evaluere effektiviteten og påvirkningen av generative AI-systemer i forskjellige sammenhenger.
  • Designe og bygge generative AI-applikasjoner, med tanke på hele utviklingssyklusen fra konsept til implementering.

Generell kompetanse:

  • Bruke generative AI-teknikker for å løse reelle problemer i en rekke domener.
  • Kritisk vurdere samfunnsmessige implikasjoner av generativ AI, særlig når det gjelder etikk og ansvarlighet.
  • Samarbeide effektivt med tverrfaglige team for å innovere innenfor feltet generativ AI.

Forkunnskapskrav

Ingen

Anbefalte forkunnskaper

Grunnleggende programmering (DAT120), Sannsynlighetsregning og statistikk 1 (STA100)
Python, Jupyter notebooks, pandas, scikit-learn, pytorch, tensorflow.

Eksamen / vurdering

Vilkår for å gå opp til eksamen/vurdering

3 obligatoriske programmeringsoppgaver (godkjent/ikke godkjent) fordelt på grunnlagene, LLMs og maskinsyn.

Alle programmeringsoppgaver må være bestått for å gå opp til skriftlig eksamen og for å få godkjent prosjektet. Gjennomføring av oppgavene skal gjøres innen fastsatt tidsfrist. Fravær på grunn av sykdom eller andre årsaker må snarest meldes til laboratoriepersonellet. Oppgavene blir godkjent manuelt gjennom demonstrasjon der studenten også må vise dypere forståelse av sin løsning. Studenten kan ikke forvente at det foretas tilpasninger for godkjenning på andre tidspunkter enn oppsatt, med mindre det er avtalt på forhånd med laboratoriepersonellet. Studenter som ikke fullfører eller ikke får godkjent oppgavene til fastsatte frister, kan ikke ta eksamen i emnet.

Arbeidsformer

4 timer forelesninger / øvingsgjennomgang og 2 timer veiledede programmeringsøvelser og prosjekt. Programmeringsøvelser krever ytterligere ikke-veiledet arbeidsinnsats.

Åpent for

Enkeltemner ved Det teknisk-naturvitenskaplige fakultet
Data Science - master i teknologi Datateknologi - master i teknologi Kybernetikk og anvendt KI - master i teknologi/siv.ing
Utveksling ved Det teknisk- naturvitenskapelige fakultet
Emnebeskrivelsen er hentet fra Felles studentsystem Versjon 1