Core topics include: basic bonding theory and crystallography, microstructure, defects and dislocation theory. Material behaviour under tensile loads, elasticity and plasticity. Hardening mechanisms. Diffusjon. Recrystallization and grain growth. Introduction to fracture mechanics and fatigue. Phase digrams: isomorphous phase diagrams, eutectic phase diagrams and the Fe-C diagram. Transformations in steels. Nucleation and growth. Kinetics and TTT-diagrams. Precipitation hardening. Microstructure and mechanical properties of steels.
Learning outcome
When the course is completed, the students should have acquired a basic understanding of how materials structure and micro-mechanisms influence mechanical properties. Analyses and calculations based on crystal structure, stress-strain curves and fracture mechanical data are expected to be mastered. Understand simple phase diagram, in particular the Fe-C diagram. Explain the origin of the common microstructures in steel. Application of TTT and CCT-diagrams.
6 hours lectures and exercises per week. Teaching language is Norwegian. 2 mandatory laboratory assignements. Laboratory report must be approved before three weeks ahead of examination date.
Overlapping
Emne
Reduksjon (SP)
Materials Technology (MSK200_1)
,
Mechanics of Materials (MSK205_1)